

(a) Use the definition to prove that $\lim_{x\to 6}$ \overline{a} $9-\frac{1}{6}$ $\frac{1}{6}x$ \mathbf{r} $= 8.$ For any $\varepsilon > 0$, we wish to find $\delta > 0$ s.t. $\left|9-\frac{1}{6}\right|$ $\frac{1}{6}x - 8$ $\vert < \varepsilon$ whenever $0 < \vert x - 6 \vert < \delta$. ⊤ in the second property of the secon $\boxed{9-\frac{1}{6}}$ $\frac{1}{6}x - 8$ $\vert < \varepsilon \Longleftrightarrow$ ¯ ¯ ¯ 1 $rac{1}{6}(6-x)$ $\leq \varepsilon \Longleftrightarrow \frac{1}{6}$ $\frac{1}{6}$ |x – 6| < $\varepsilon \Longleftrightarrow |x-6|$ < 6 ε . Thus, $\delta = 6\varepsilon$. (b) $\lim_{x\to 2}$ \overline{a} $\sin(x-2)$ $x^2 + x - 6$ \mathbf{r} $=\lim_{x\to 2}$ \overline{a} $\sin(x-2)$ $\frac{\sin(x-2)}{(x-2)(x+3)} = \frac{1}{5}$ $\frac{1}{5}$.

2. $f(x) =$ √ $\overline{9-x^2}$ $\frac{\sqrt{3}-x}{x^4-16}$ is continuous on $[-3,-2) \cup (-2,2) \cup (2,3]$.

3. Let
$$
f(x) = \frac{(x-3)^{\frac{2}{3}}}{x-1}
$$
. $f'(x) = \frac{\frac{2}{3}(x-3)^{\frac{-1}{3}}(x-1) - (1)(x-3)^{\frac{2}{3}}}{(x-1)^2} = \frac{2(x-1) - 3(x-3)}{3(x-3)^{\frac{1}{3}}(x-1)^2}$.
Thus $f'(x) = \frac{-x+7}{3(x-3)^{\frac{1}{3}}(x-1)^2}$.

- (a) The tangent line is vertical at $x = 3$. Note that $x = 1 \notin D_f$.
- (b) The tangent line is horizontal at $x = 7$.

4. Let
$$
f(x) = x - \frac{3}{2}x^{\frac{2}{3}}
$$
.
\n1. $f'(x) = 1 - x^{\frac{-1}{3}} = \frac{x^{\frac{1}{3}} - 1}{x^{\frac{1}{3}}}$.

2.
$$
f'(c) = 0
$$
 when $c = 1$.

3. f is continuous on [−8, 8].

5. Let $P = x \cdot y$ and $S = x + y$, where x and y are positive real numbers. From $P = x \cdot y = 100$ we derive that $y = \frac{100}{x}$ $\frac{00}{x}$. Now, S can be written as $S = x + \frac{100}{x}$ $\frac{00}{x}$. Hence, $\frac{dS}{dx} = 1 - \frac{100}{x^2} = \frac{x^2 - 100}{x^2}$. The only critical number is $x = 10$. Since $f''(x) = \frac{200}{x^3} > 0$ for $x = 10$, we conclude that the sum is minimum when $x = 10$ and $y = 10$.

6.

1.

(a) Let
$$
u = x^2 + 2x + 7
$$
. Then $du = 2(x+1)dx$. $\int \frac{x+1}{\sqrt{x^2 + 2x + 7}} dx = \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \sqrt{u} + C = \sqrt{x^2 + 2x + 7} + C$.
\n(b) $\int \frac{1 + \sin(x)}{\cos^2(x)} = dx = \int (\sec^2(x) + \sec(x) \tan(x)) dx = \tan(x) + \sec(x) + C$.

7. Evaluate
$$
\int_{-1}^{1} (1-x)\sqrt{1-x^2} \, dx = \int_{-1}^{1} \sqrt{1-x^2} \, dx - \int_{-1}^{1} x\sqrt{1-x^2} \, dx = \frac{\pi}{2} + 0 = \frac{\pi}{2}.
$$

\n8. $y = \int_{0}^{x} \frac{t^2-1}{t^2+1} \, dt$. $y' = \frac{x^2-1}{x^2+1}$ and $y'' = \frac{2x(x^2+1)-2x(x^2-1)}{(x^2+1)^2} = \frac{4x}{(x^2+1)^2}$.
\n $f''(x) = 0$ when $x = 0$. Since $f''(x) < 0$ for $x < 0$ and $f''(x) > 0$ for $x > 0$, then the curve $y = f(x)$ has an inflection point at $x = 0$. This point is $(0,0)$.

9. Points of intersection: set $x = \sqrt{x}$: $x = 0, 1$. The total area is $A = A_1 + A_2$, where: $A_1 =$ $\frac{1}{r}$ 0 ¡√ $\bar{x} - x$ ¢ $dx =$ بر
17 2 $rac{2}{3}x^{\frac{3}{2}}-\frac{x^2}{2}$ 2 -
1 ר 0 $=\frac{1}{a}$ $\frac{1}{6}$ and $A_2 =$ $r⁴$ 1 ¡ $x -$ √ \bar{x} ¢ $dx =$ · x^2 $\frac{x^2}{2}-\frac{2}{3}$ $\frac{2}{3}x^{\frac{3}{2}}$ $\frac{1}{1}$ 1 $=\frac{17}{3}$ $\frac{17}{6}$. Thus, $A = \frac{18}{6} = 3$.

10. Points of intersection: set $x^2 = x + 2$: $x^2 - x - 2 = 0$: $(x - 2)(x + 1) = 0$: $x = -1, 2$.

(a)
$$
x = 7
$$
: $V = \int_{-1}^{2} 2\pi (7 - x)[(x + 2) - (x^{2})] dx$.
\n(b) $y = -1$: $V = \int_{-1}^{2} \pi [((x + 2) + 1)^{2} - ((x^{2}) + 1)^{2}] dx$.