

(a) Use the definition to prove that $\lim_{x \to 6} \left(9 - \frac{1}{6}x\right) = 8.$ For any $\varepsilon > 0$, we wish to find $\delta > 0$ s.t. $\left|9 - \frac{1}{6}x - 8\right| < \varepsilon$ whenever $0 < |x - 6| < \delta$. $\left|9 - \frac{1}{6}x - 8\right| < \varepsilon \iff \left|\frac{1}{6}(6 - x)\right| < \varepsilon \iff \frac{1}{6}|x - 6| < \varepsilon \iff |x - 6| < 6\varepsilon$. Thus, $\delta = 6\varepsilon$. (b) $\lim_{x \to 2} \left(\frac{\sin(x - 2)}{x^2 + x - 6}\right) = \lim_{x \to 2} \left(\frac{\sin(x - 2)}{(x - 2)(x + 3)}\right) = \frac{1}{5}.$

2. $f(x) = \frac{\sqrt{9-x^2}}{x^4 - 16}$ is continuous on $[-3, -2) \cup (-2, 2) \cup (2, 3]$.

3. Let
$$f(x) = \frac{(x-3)^{\frac{2}{3}}}{x-1}$$
. $f'(x) = \frac{\frac{2}{3}(x-3)^{\frac{-1}{3}}(x-1) - (1)(x-3)^{\frac{2}{3}}}{(x-1)^2} = \frac{2(x-1) - 3(x-3)}{3(x-3)^{\frac{1}{3}}(x-1)^2}$
Thus $f'(x) = \frac{-x+7}{3(x-3)^{\frac{1}{3}}(x-1)^2}$.

- (a) The tangent line is vertical at x = 3. Note that $x = 1 \notin D_f$.
- (b) The tangent line is horizontal at x = 7.

4. Let
$$f(x) = x - \frac{3}{2}x^{\frac{2}{3}}$$
.
1. $f'(x) = 1 - x^{\frac{-1}{3}} = \frac{x^{\frac{1}{3}} - 1}{x^{\frac{1}{3}}}$

2.
$$f'(c) = 0$$
 when $c = 1$.

3. f is continuous on [-8, 8].

5. Let $P = x \cdot y$ and S = x + y, where x and y are positive real numbers. From $P = x \cdot y = 100$ we derive that $y = \frac{100}{x}$. Now, S can be written as $S = x + \frac{100}{x}$. Hence, $\frac{dS}{dx} = 1 - \frac{100}{x^2} = \frac{x^2 - 100}{x^2}$. The only critical number is x = 10. Since $f''(x) = \frac{200}{x^3} > 0$ for x = 10, we conclude that the sum is minimum when x = 10 and y = 10.

6.

1.

(a) Let
$$u = x^2 + 2x + 7$$
. Then $du = 2(x+1)dx$. $\int \frac{x+1}{\sqrt{x^2+2x+7}} dx = \frac{1}{2} \int \frac{1}{\sqrt{u}} du = \sqrt{u} + C = \sqrt{x^2+2x+7} + C$.
(b) $\int \frac{1+\sin(x)}{\cos^2(x)} = dx = \int \left(\sec^2(x) + \sec(x)\tan(x)\right) dx = \tan(x) + \sec(x) + C$.

7. Evaluate
$$\int_{-1}^{1} (1-x)\sqrt{1-x^2} \, dx = \int_{-1}^{1} \sqrt{1-x^2} \, dx - \int_{-1}^{1} x\sqrt{1-x^2} \, dx = \frac{\pi}{2} + 0 = \frac{\pi}{2}.$$

8. $y = \int_{0}^{x} \frac{t^2-1}{t^2+1} \, dt.$ $y' = \frac{x^2-1}{x^2+1}$ and $y'' = \frac{2x(x^2+1)-2x(x^2-1)}{(x^2+1)^2} = \frac{4x}{(x^2+1)^2}.$
 $f''(x) = 0$ when $x = 0$. Since $f''(x) < 0$ for $x < 0$ and $f''(x) > 0$ for $x > 0$, then the curve $y = f(x)$ has an inflection point at $x = 0$. This point is $(0, 0)$.

9. Points of intersection: set $x = \sqrt{x}$: x = 0, 1. The total area is $A = A_1 + A_2$, where: $A_1 = \int_0^1 (\sqrt{x} - x) \, dx = \left[\frac{2}{3}x^{\frac{3}{2}} - \frac{x^2}{2}\right]_0^1 = \frac{1}{6}$, and $A_2 = \int_1^4 (x - \sqrt{x}) \, dx = \left[\frac{x^2}{2} - \frac{2}{3}x^{\frac{3}{2}}\right]_1^4 = \frac{17}{6}$. Thus, $A = \frac{18}{6} = 3$.

10. Points of intersection: set $x^2 = x + 2$: $x^2 - x - 2 = 0$: (x - 2)(x + 1) = 0: x = -1, 2.

(a)
$$x = 7$$
: $V = \int_{-1}^{2} 2\pi (7 - x)[(x + 2) - (x^2)] dx$.
(b) $y = -1$: $V = \int_{-1}^{2} \pi [((x + 2) + 1)^2 - ((x^2) + 1)^2] dx$.